sympy ¸ðµâÀ» ºÒ·¯¿À°í, »ç¿ëÇÒ ±âÈ£ º¯¼ö¸¦ ¼±¾ðÇÑ´Ù.
from sympy import *
init_printing()
n, r = symbols('n r', integer=True)
Á¤¼ö $n$ ÀÇ °è½Â(factorial)À» Ç¥ÇöÇÑ´Ù.
factorial( n )
factorial( 4 )
$0$ ÀÇ °è½ÂÀº $1$ ·Î Á¤ÀÇÇÑ´Ù. $$ 0! = 1 $$
factorial( 0 )
°è½ÂÇÔ¼ö´Â ¸Å¿ì ºü¸£°Ô Áõ°¡ÇÏ´Â ÇÔ¼öÀÌ´Ù.
factorial( 100 )
¼ø¿ÀÇ ¼ö (the number of permutations):
$$ _ n P _ r = \frac {n!} {(n-r)!} $$factorial( n ) / factorial( n-r )
Á¶ÇÕÀÇ ¼ö (the number of combinations):
$$ _ n C _ r = \frac {n!} {r! \, (n-r)!} = {n \choose r} $$¶ÇÇÑ, Á¶ÇÕÀÇ ¼ö´Â ÀÌÇ×°è¼ö(binomial coefficient)¿Í °°´Ù.
binomial( n, r )
µÎ Ç¥ÇöÀÌ µ¿ÀÏÇÔÀ» simplify ÇÔ¼ö·Î È®ÀÎÇÒ ¼ö ÀÖ´Ù
simplify( factorial( n ) / factorial( r ) / factorial( n-r ) - binomial( n, r ) )