sympy ¸ðµâÀ» ºÒ·¯¿À°í, »ç¿ëÇÒ ±âÈ£ º¯¼ö¸¦ ¼±¾ðÇÑ´Ù. ¸ËÇ÷Ը³ ¸ðµâÀ» ºÒ·¯¿Â´Ù.
from sympy import *
init_printing()
x, y, z = symbols('x y z')
a, b, c, t = symbols('a b c t')
%matplotlib inline
´ÙÀ½ »ï°¢ÇÔ¼öÀÇ °ªÀ» ±¸ÇÑ´Ù.
$$ \sin \frac \pi 3 $$sin( pi / 3 )
»ï°¢ÇÔ¼öÀÇ ¼ºÁú:
$$ \sin ^2 x + \cos ^2 x = 1 $$simplify( sin( x )**2 + cos( x )**2 )
»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, x+2 \pi$
$$ \begin{align} \sin \left( x +2 \pi \right) &= \,\sin x \\ \cos \left( x +2 \pi \right) &= \, \cos x \\ \tan \left( x +2 \pi \right) &= \, \tan x \end{align} $$simplify( sin( x + 2*pi ) )
»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, -x$
$$ \begin{align} \sin \left( -x \right) &= - \sin x \\ \cos \left( -x \right) &= \, \cos x \\ \tan \left( -x \right) &= - \tan x \end{align} $$simplify( cos(-x) )
»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, \pi + x$
$$ \begin{align} \sin \left( \pi + x \right) &= - \sin x \\ \cos \left( \pi + x \right) &= - \cos x \\ \tan \left( \pi + x \right) &= \, \tan x \end{align} $$simplify( sin( pi + x ) )
»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, \pi - x$
$$ \begin{align} \sin \left( \pi - x \right) &= \,\sin x \\ \cos \left( \pi - x \right) &= - \cos x \\ \tan \left( \pi - x \right) &= - \tan x \end{align} $$simplify( tan( pi - x ) )
»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, \frac \pi 2 + x $
$$ \begin{align} \sin \left( \frac \pi 2 + x \right) &= \,\cos x \\ \cos \left( \frac \pi 2 + x \right) &= - \sin x \\ \tan \left( \frac \pi 2 + x \right) &= - \frac 1 {\tan x } \end{align} $$simplify( sin( pi/2 + x ) )
»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, \frac \pi 2 - x $
$$ \begin{align} \sin \left( \frac \pi 2 - x \right) &= \,\cos x \\ \cos \left( \frac \pi 2 - x \right) &= \, \sin x \\ \tan \left( \frac \pi 2 - x \right) &= \, \frac 1 {\tan x } \end{align} $$simplify( cos( pi/2 - x ) )
»çÀÎÇÔ¼ö
$y=\sin x $
plot( sin(x), xlim=(-6.28,6.28), ylim=(-2,2) )
ÄÚ»çÀÎÇÔ¼ö
$y=\cos x $
plot( cos(x), xlim=(-6.28,6.28), ylim=(-2,2) )
źÁ¨Æ®ÇÔ¼ö
$y=\tan x $
plot( tan(x), xlim=(-6.28,6.28), ylim=(-4,4) )
»ï°¢ÇÔ¼öÀÇ µ¡¼ÀÁ¤¸®
$$ \begin{align} \sin \left( a+b \right) &= \,\sin a \cos b + \cos a \sin b \\ \sin \left( a-b \right) &= \,\sin a \cos b - \cos a \sin b \\ \cos \left( a+b \right) &= \,\cos a \cos b - \sin a \sin b \\ \cos \left( a-b \right) &= \,\cos a \cos b + \sin a \sin b \\ \tan (a+b) &= \frac {\tan a + \tan b} {1- \tan a \tan b} \\ \tan (a-b) &= \frac {\tan a - \tan b} {1+ \tan a \tan b} \\ \end{align} $$»ï°¢ÇÔ¼öÀÇ Àü°³´Â expand_trig( ) ÇÔ¼ö¸¦ ÀÌ¿ëÇÑ´Ù.
expand_trig( sin( a + b ) )
expand_trig( tan( a + b ) )
»ï°¢ÇÔ¼öÀÇ µ¡¼ÀÁ¤¸® °ø½ÄÀ» ¹Ý´ë ¹æÇâÀ¸·Î °£´ÜÈ÷ ÇÏ·Á¸é, trigsimp( ) ÇÔ¼ö¸¦ ÀÌ¿ëÇÑ´Ù.
trigsimp( cos(a)*cos(b) - sin(a)*sin(b) )
simplify( ) ÇÔ¼ö¸¦ »ç¿ëÇÏ¿©µµ °°Àº °á°ú¸¦ ¾ò´Â´Ù.
simplify( cos(a)*cos(b) - sin(a)*sin(b) )
µ¡¼ÀÁ¤¸®¸¦ ÀÌ¿ëÇϸé $$ \sin t + \cos t = \sqrt 2 \sin \left( t+ \frac {\pi} 4 \right) $$
trigsimp( sin(t) + cos(t) )
simplify( sin(t) + cos(t) )
ÀÌ °æ¿ì¿¡´Â simplify( ) ÇÔ¼ö°¡ Àß ÀÛµ¿ÇÏÁö ¾Ê´Âµ¥, trigsimp( ) ÇÔ¼ö°¡ »ï°¢ÇÔ¼ö¿¡ ´õ Àß Æ¯ÈµÇ¾î ÀÖ´Ù.
¹è°¢ÀÇ °ø½Ä
$$ \begin{align} \sin 2a &= \, 2 \sin a \cos a \\ \cos 2a &= \,\cos ^2 a - \sin ^2 a \,=\,2 \cos ^2 a - 1 \,=\, 1 - \sin ^2 a \\ \tan 2a &= \frac {2 \tan a } {1- \tan ^2 a } \\ \end{align} $$expand_trig( sin(2*a) )
expand_trig( cos(2*a) )
¹Ý°¢ÀÇ °ø½Ä
$$ \begin{align} \sin ^2 \frac a 2 &= \, \frac {1- \cos a} 2 \\ \cos ^2 \frac a 2 &= \, \frac {1+ \cos a} 2 \\ \tan ^2 \frac a 2 &= \, \frac {1- \cos a} {1+ \cos a} \\ \end{align} $$À§ °ø½ÄÀÇ ÇüÅ·δ ¿ìº¯ÀÇ °á°ú·Î Àß Á¤¸® µÇ¾îÁöÁö ¾ÊÁö¸¸,
trigsimp( sin(a/2) **2 )
ÇüŸ¦ Á¶±Ý ¹Ù²Ù¸é °£·«È°¡ °¡´ÉÇØ Áø´Ù.
trigsimp( 1 - 2*sin(a/2)**2 )
trigsimp( 1 - 2*cos(a/2)**2 )
»ï°¢ÇÔ¼öÀÇ °öÀÇ °ø½Ä
$$ \begin{align} \sin a \cos b &= \, \frac 1 2 \left \{ \sin (a+b) + \sin (a-b) \right \} \\ \cos a \sin b &= \, \frac 1 2 \left \{ \sin (a+b) - \sin (a-b) \right \} \\ \cos a \cos b &= \, \frac 1 2 \left \{ \cos (a+b) + \cos (a-b) \right \} \\ \sin a \sin b &= \, - \frac 1 2 \left \{ \cos (a+b) - \cos (a-b) \right \} \\ \end{align} $$trigsimp( sin(a+b) + sin(a-b) )
trigsimp( cos(a+b) + cos(a-b) )
»ï°¢ÇÔ¼öÀÇ ÇÕÀÇ °ø½Ä
$$ \begin{align} \sin A + \sin B &= \, 2 \sin \frac {A+B} 2 \, \cos \frac {A-B} 2 \\ \sin A - \sin B &= \, 2 \cos \frac {A+B} 2 \, \sin \frac {A-B} 2 \\ \cos A + \cos B &= \, 2 \cos \frac {A+B} 2 \, \cos \frac {A-B} 2 \\ \cos A - \cos B &= \,-2 \sin \frac {A+B} 2 \, \sin \frac {A-B} 2 \\ \end{align} $$°ø½ÄÀÇ ¿ìº¯¿¡¼ Áº¯À¸·Î °£·«È°¡ ½±´Ù.
A, B = symbols('A B')
trigsimp( 2 * sin((A+B)/2) * cos((A-B)/2) )
trigsimp( -2 * sin((A+B)/2) * sin((A-B)/2) )
´ÙÀ½ ½ÄÀ» °£´ÜÈ÷ ÇÑ´Ù.
$ (1- \sec ^4 t ) \cot ^2 t + \sec ^2 t $
trigsimp( (1-cos(t)**(-4)) * tan(t)**(-2) + cos(t)**(-2) )
»ï°¢ ¹æÁ¤½Ä $\,\, 2 \cos x + 1 = 0$ À» Ǭ´Ù. $\, ( 0 \leq x < 2 \pi )$
solve( Eq( 2*cos(x)+1, 0 ), x )
´ÙÀ½ »ï°¢ ¹æÁ¤½ÄÀ» Ǭ´Ù.
$\qquad \sin t = \cos 2t \qquad \qquad$ ÇØ: $t= \frac \pi 6 , \frac {5 \pi} 6 , - \frac \pi 2 $
plot( sin(t) - cos(2*t), xlim=(-6.28,6.28), ylim=(-3,3) )
soln = solve( sin(t) - cos(2*t), t)
soln
ÇØ°¡ º¹¼Ò¼öÀÇ ·Î±× ÇÔ¼ö·Î º¹ÀâÇÑ ÇüÅ·ΠÁÖ¾îÁ³´Ù. ÇÏÁö¸¸ ½ÇÁ¦·Î µÎ ¹øÂ° ÇØÀÇ ½Ç¼öºÎ¿Í Çã¼öºÎ¸¦ °¢°¢ ±¸Çغ¸¸é
re( soln[1] )
im( soln[1] )
ÇØ°¡ ½Ç¼öÀÓÀ» ¾Ë ¼ö ÀÖ´Ù.
º¹¼Ò¼ö¸¦ ½Ç¼ö¿Í Çã¼ö ºÎºÐÀ¸·Î ³ª´©¾î Ç¥ÇöÇÏ´Â expand_complex( ) ÇÔ¼ö¸¦ ÀÌ¿ëÇÑ´Ù. ¿¹¸¦ µé¾î¼
$ e ^{\, i \frac \pi 4 } = \cos \frac \pi 4 + i \sin \frac \pi 4$
expand_complex( exp(I*pi/4) )
expand_complex( ) ¹æ¹ýÀ» µÎ ÇØ¿¡ Àû¿ëÇØº¸¸é
expand_complex( soln[1] )
expand_complex( soln[2] )
À§¿Í °°ÀÌ Çã¼öºÎ°¡ ¾ø´Â ½Ç¼öÇØ ÀÓÀ» È®ÀÎÇÒ ¼ö ÀÖ´Ù.
´ÙÀ½ »ï°¢ ¹æÁ¤½ÄÀ» Ǭ´Ù.
$\qquad \sqrt 3 \sin x - \cos x = 1\qquad \qquad$ ÇØ: $ \, x= \frac \pi 3 , \pi $
Áº¯ $= 0 \,\,$ ÀÇ ÇüÅ·Π¹Ù²Ù¾î¼, ±×·¡ÇÁ¸¦ ±×¸®¸é
plot( sqrt(3)*sin(x) - cos(x) - 1, xlim=(-6.28,6.28), ylim=(-3,3) )
soln = solve( sqrt(3)*sin(x) - cos(x) - 1, x )
soln
ÇØ°¡ Çϳª¸¸ ¾ò¾îÁö°í, µÎ ¹øÂ° ÇØ $x = \pi$ ´Â ¾ò¾îÁöÁö ¾Ê¾Ò´Ù. À§ ¼ö½ÄÀ» ¸ÕÀú °£´ÜÈ÷ ÇÏ°í ³ª¼
trigsimp( sqrt(3)*sin(x) - cos(x) - 1 )
solve( _ , x )
´Ù½Ã Ç®¸é µÎ °³ÀÇ ÇØ°¡ ¾ò¾îÁø´Ù.
±×·¡ÇÁ¸¦ ¸ÕÀú ±×·Áº¸°í, ÇØ¸¦ ±¸ÇÏ´Â °ÍÀÌ È¿°úÀûÀÎ Ç®ÀÌ ¹æ¹ý ÀÓÀ» ¾Ë ¼ö ÀÖ´Ù.
´ÙÀ½ »ï°¢ ¹æÁ¤½ÄÀ» Ǭ´Ù.
$\qquad \cos 2x = 2 -3 \sin x \qquad$ ÇØ: $\, x= \frac \pi 6 , \frac \pi 2, \frac {5 \pi} 6 $
Áº¯ $= 0 \,\,$ ÀÇ ÇüÅ·Π¹Ù²Ù¾î¼, ±×·¡ÇÁ¸¦ ±×¸®¸é
plot( cos(2*x) + 3*sin(x) - 2 , xlim=(-6.28,6.28), ylim=(-7,1) )
solve( cos(2*x) + 3*sin(x) - 2 , x )
ÇØ°¡ ±¸ÇØÁöÁö ¾Ê´Â´Ù. ÁÖ¾îÁø ¼ö½ÄÀ» °£·«ÈÇØ º¸¸é
trigsimp( cos(2*x) - 2 + 3*sin(x) )
´õ ÀÌ»ó °£·«È°¡ µÇÁö ¾Ê¾Ò´Ù. ¼ö½ÄÀ» Àü°³ ÇÑ ´ÙÀ½¿¡ ÇØ¸¦ ±¸Çغ¸ÀÚ.
expand_trig( cos(2*x) - 2 + 3*sin(x) )
soln = solve( _ , x )
soln
simplify( soln[2] )
¸¶Áö¸· ÇØ´Â ¼öÄ¡ÀûÀ¸·Î $\frac {5 } 6 \pi$ ¿Í °°À½À» È®ÀÎÇØ º¼ ¼ö ÀÖ´Ù.
N( soln[2] - pi * 5 / 6 )
ÇØ¼®ÀûÀ¸·Î $\frac {5 } 6 \pi$ ¿Í °°À½À» º¸À̱â À§Çؼ, $\tan \frac {5 } {12} \pi $ ¸¦ ±¸Çغ¸¸é
tan(5*pi/12)
$\tan ( \frac {5 } {12} \pi ) = \sqrt 3 + 2 $ À̹ǷΠ$\qquad \frac {5 } {12} \pi = \tan ^{-1} ( \sqrt 3 + 2 ) $ À̰í
$ \frac {5 } {6} \pi = 2 \tan ^{-1} ( \sqrt 3 + 2 ) $ ÀÌ´Ù.