코딩 수학


sympy ¸ðµâÀ» ºÒ·¯¿À°í, »ç¿ëÇÒ ±âÈ£ º¯¼ö¸¦ ¼±¾ðÇÑ´Ù. ¸ËÇ÷Ը³ ¸ðµâÀ» ºÒ·¯¿Â´Ù.

In [1]:
from sympy import *
init_printing()          

x, y, z = symbols('x y z')
a, b, c, t = symbols('a b c t')

%matplotlib inline 

삼각함수

´ÙÀ½ »ï°¢ÇÔ¼öÀÇ °ªÀ» ±¸ÇÑ´Ù.

$$ \sin \frac \pi 3 $$
In [2]:
sin( pi / 3 )
Out[2]:
$$\frac{\sqrt{3}}{2}$$

»ï°¢ÇÔ¼öÀÇ ¼ºÁú:

$$ \sin ^2 x + \cos ^2 x = 1 $$
In [3]:
simplify( sin( x )**2 + cos( x )**2 )
Out[3]:
$$1$$

»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, x+2 \pi$

$$ \begin{align} \sin \left( x +2 \pi \right) &= \,\sin x \\ \cos \left( x +2 \pi \right) &= \, \cos x \\ \tan \left( x +2 \pi \right) &= \, \tan x \end{align} $$
In [4]:
simplify( sin( x + 2*pi ) )
Out[4]:
$$\sin{\left (x \right )}$$

»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, -x$

$$ \begin{align} \sin \left( -x \right) &= - \sin x \\ \cos \left( -x \right) &= \, \cos x \\ \tan \left( -x \right) &= - \tan x \end{align} $$
In [5]:
simplify( cos(-x) )
Out[5]:
$$\cos{\left (x \right )}$$

»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, \pi + x$

$$ \begin{align} \sin \left( \pi + x \right) &= - \sin x \\ \cos \left( \pi + x \right) &= - \cos x \\ \tan \left( \pi + x \right) &= \, \tan x \end{align} $$
In [6]:
simplify( sin( pi + x ) )
Out[6]:
$$- \sin{\left (x \right )}$$

»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, \pi - x$

$$ \begin{align} \sin \left( \pi - x \right) &= \,\sin x \\ \cos \left( \pi - x \right) &= - \cos x \\ \tan \left( \pi - x \right) &= - \tan x \end{align} $$
In [7]:
simplify( tan( pi - x ) )
Out[7]:
$$- \tan{\left (x \right )}$$

»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, \frac \pi 2 + x $

$$ \begin{align} \sin \left( \frac \pi 2 + x \right) &= \,\cos x \\ \cos \left( \frac \pi 2 + x \right) &= - \sin x \\ \tan \left( \frac \pi 2 + x \right) &= - \frac 1 {\tan x } \end{align} $$
In [8]:
simplify( sin( pi/2 + x ) )
Out[8]:
$$\cos{\left (x \right )}$$

»ï°¢ÇÔ¼öÀÇ ¼ºÁú: $\,\, \frac \pi 2 - x $

$$ \begin{align} \sin \left( \frac \pi 2 - x \right) &= \,\cos x \\ \cos \left( \frac \pi 2 - x \right) &= \, \sin x \\ \tan \left( \frac \pi 2 - x \right) &= \, \frac 1 {\tan x } \end{align} $$
In [9]:
simplify( cos( pi/2 - x ) )
Out[9]:
$$\sin{\left (x \right )}$$

삼각함수의 그래프

»çÀÎÇÔ¼ö

$y=\sin x $

In [10]:
plot( sin(x), xlim=(-6.28,6.28), ylim=(-2,2) )
Out[10]:
<sympy.plotting.plot.Plot at 0x7830d50>

ÄÚ»çÀÎÇÔ¼ö

$y=\cos x $

In [11]:
plot( cos(x), xlim=(-6.28,6.28), ylim=(-2,2) )
Out[11]:
<sympy.plotting.plot.Plot at 0x788c9b0>

źÁ¨Æ®ÇÔ¼ö

$y=\tan x $

In [12]:
plot( tan(x), xlim=(-6.28,6.28), ylim=(-4,4) )
Out[12]:
<sympy.plotting.plot.Plot at 0x8aa3770>

삼각함수의 덧셈정리

»ï°¢ÇÔ¼öÀÇ µ¡¼ÀÁ¤¸®

$$ \begin{align} \sin \left( a+b \right) &= \,\sin a \cos b + \cos a \sin b \\ \sin \left( a-b \right) &= \,\sin a \cos b - \cos a \sin b \\ \cos \left( a+b \right) &= \,\cos a \cos b - \sin a \sin b \\ \cos \left( a-b \right) &= \,\cos a \cos b + \sin a \sin b \\ \tan (a+b) &= \frac {\tan a + \tan b} {1- \tan a \tan b} \\ \tan (a-b) &= \frac {\tan a - \tan b} {1+ \tan a \tan b} \\ \end{align} $$

»ï°¢ÇÔ¼öÀÇ Àü°³´Â expand_trig( ) ÇÔ¼ö¸¦ ÀÌ¿ëÇÑ´Ù.

In [13]:
expand_trig( sin( a + b ) )
Out[13]:
$$\sin{\left (a \right )} \cos{\left (b \right )} + \sin{\left (b \right )} \cos{\left (a \right )}$$
In [14]:
expand_trig( tan( a + b  ) )
Out[14]:
$$\frac{\tan{\left (a \right )} + \tan{\left (b \right )}}{- \tan{\left (a \right )} \tan{\left (b \right )} + 1}$$

»ï°¢ÇÔ¼öÀÇ µ¡¼ÀÁ¤¸® °ø½ÄÀ» ¹Ý´ë ¹æÇâÀ¸·Î °£´ÜÈ÷ ÇÏ·Á¸é, trigsimp( ) ÇÔ¼ö¸¦ ÀÌ¿ëÇÑ´Ù.

In [15]:
trigsimp( cos(a)*cos(b) - sin(a)*sin(b) )
Out[15]:
$$\cos{\left (a + b \right )}$$

simplify( ) ÇÔ¼ö¸¦ »ç¿ëÇÏ¿©µµ °°Àº °á°ú¸¦ ¾ò´Â´Ù.

In [16]:
simplify( cos(a)*cos(b) - sin(a)*sin(b) )
Out[16]:
$$\cos{\left (a + b \right )}$$

삼각함수의 합성

µ¡¼ÀÁ¤¸®¸¦ ÀÌ¿ëÇϸé $$ \sin t + \cos t = \sqrt 2 \sin \left( t+ \frac {\pi} 4 \right) $$

In [17]:
trigsimp( sin(t) + cos(t) )
Out[17]:
$$\sqrt{2} \sin{\left (t + \frac{\pi}{4} \right )}$$
In [18]:
simplify( sin(t) + cos(t) )
Out[18]:
$$\sin{\left (t \right )} + \cos{\left (t \right )}$$

ÀÌ °æ¿ì¿¡´Â simplify( ) ÇÔ¼ö°¡ Àß ÀÛµ¿ÇÏÁö ¾Ê´Âµ¥, trigsimp( ) ÇÔ¼ö°¡ »ï°¢ÇÔ¼ö¿¡ ´õ Àß Æ¯È­µÇ¾î ÀÖ´Ù.

¹è°¢ÀÇ °ø½Ä

$$ \begin{align} \sin 2a &= \, 2 \sin a \cos a \\ \cos 2a &= \,\cos ^2 a - \sin ^2 a \,=\,2 \cos ^2 a - 1 \,=\, 1 - \sin ^2 a \\ \tan 2a &= \frac {2 \tan a } {1- \tan ^2 a } \\ \end{align} $$
In [19]:
expand_trig( sin(2*a) )
Out[19]:
$$2 \sin{\left (a \right )} \cos{\left (a \right )}$$
In [20]:
expand_trig( cos(2*a) )
Out[20]:
$$2 \cos^{2}{\left (a \right )} - 1$$

¹Ý°¢ÀÇ °ø½Ä

$$ \begin{align} \sin ^2 \frac a 2 &= \, \frac {1- \cos a} 2 \\ \cos ^2 \frac a 2 &= \, \frac {1+ \cos a} 2 \\ \tan ^2 \frac a 2 &= \, \frac {1- \cos a} {1+ \cos a} \\ \end{align} $$

À§ °ø½ÄÀÇ ÇüÅ·δ ¿ìº¯ÀÇ °á°ú·Î Àß Á¤¸® µÇ¾îÁöÁö ¾ÊÁö¸¸,

In [21]:
trigsimp( sin(a/2) **2 )
Out[21]:
$$\sin^{2}{\left (\frac{a}{2} \right )}$$

ÇüŸ¦ Á¶±Ý ¹Ù²Ù¸é °£·«È­°¡ °¡´ÉÇØ Áø´Ù.

In [22]:
trigsimp( 1 - 2*sin(a/2)**2 )
Out[22]:
$$\cos{\left (a \right )}$$
In [23]:
trigsimp( 1 - 2*cos(a/2)**2 )
Out[23]:
$$- \cos{\left (a \right )}$$

»ï°¢ÇÔ¼öÀÇ °öÀÇ °ø½Ä

$$ \begin{align} \sin a \cos b &= \, \frac 1 2 \left \{ \sin (a+b) + \sin (a-b) \right \} \\ \cos a \sin b &= \, \frac 1 2 \left \{ \sin (a+b) - \sin (a-b) \right \} \\ \cos a \cos b &= \, \frac 1 2 \left \{ \cos (a+b) + \cos (a-b) \right \} \\ \sin a \sin b &= \, - \frac 1 2 \left \{ \cos (a+b) - \cos (a-b) \right \} \\ \end{align} $$
In [24]:
trigsimp( sin(a+b) + sin(a-b) )
Out[24]:
$$2 \sin{\left (a \right )} \cos{\left (b \right )}$$
In [25]:
trigsimp( cos(a+b) + cos(a-b) )
Out[25]:
$$2 \cos{\left (a \right )} \cos{\left (b \right )}$$

»ï°¢ÇÔ¼öÀÇ ÇÕÀÇ °ø½Ä

$$ \begin{align} \sin A + \sin B &= \, 2 \sin \frac {A+B} 2 \, \cos \frac {A-B} 2 \\ \sin A - \sin B &= \, 2 \cos \frac {A+B} 2 \, \sin \frac {A-B} 2 \\ \cos A + \cos B &= \, 2 \cos \frac {A+B} 2 \, \cos \frac {A-B} 2 \\ \cos A - \cos B &= \,-2 \sin \frac {A+B} 2 \, \sin \frac {A-B} 2 \\ \end{align} $$

°ø½ÄÀÇ ¿ìº¯¿¡¼­ Áº¯À¸·Î °£·«È­°¡ ½±´Ù.

In [26]:
A, B = symbols('A B')
In [27]:
trigsimp( 2 * sin((A+B)/2) * cos((A-B)/2) )
Out[27]:
$$\sin{\left (A \right )} + \sin{\left (B \right )}$$
In [28]:
trigsimp( -2 * sin((A+B)/2) * sin((A-B)/2) )
Out[28]:
$$\cos{\left (A \right )} - \cos{\left (B \right )}$$

´ÙÀ½ ½ÄÀ» °£´ÜÈ÷ ÇÑ´Ù.

$ (1- \sec ^4 t ) \cot ^2 t + \sec ^2 t $

In [29]:
trigsimp( (1-cos(t)**(-4)) * tan(t)**(-2) + cos(t)**(-2) )
Out[29]:
$$-1$$

삼각 방정식

»ï°¢ ¹æÁ¤½Ä $\,\, 2 \cos x + 1 = 0$ À» Ǭ´Ù. $\, ( 0 \leq x < 2 \pi )$

In [30]:
solve( Eq( 2*cos(x)+1, 0 ), x )
Out[30]:
$$\left [ \frac{2 \pi}{3}, \quad \frac{4 \pi}{3}\right ]$$

´ÙÀ½ »ï°¢ ¹æÁ¤½ÄÀ» Ǭ´Ù.

$\qquad \sin t = \cos 2t \qquad \qquad$ ÇØ: $t= \frac \pi 6 , \frac {5 \pi} 6 , - \frac \pi 2 $

In [31]:
plot( sin(t) - cos(2*t), xlim=(-6.28,6.28), ylim=(-3,3) )
Out[31]:
<sympy.plotting.plot.Plot at 0x8f8e150>
In [32]:
soln = solve( sin(t) - cos(2*t), t)
soln
Out[32]:
$$\left [ - \frac{\pi}{2}, \quad - i \log{\left (- \frac{\sqrt{3}}{2} + \frac{i}{2} \right )}, \quad - i \log{\left (\frac{\sqrt{3}}{2} + \frac{i}{2} \right )}\right ]$$

ÇØ°¡ º¹¼Ò¼öÀÇ ·Î±× ÇÔ¼ö·Î º¹ÀâÇÑ ÇüÅ·ΠÁÖ¾îÁ³´Ù. ÇÏÁö¸¸ ½ÇÁ¦·Î µÎ ¹øÂ° ÇØÀÇ ½Ç¼öºÎ¿Í Çã¼öºÎ¸¦ °¢°¢ ±¸Çغ¸¸é

In [33]:
re( soln[1] )
Out[33]:
$$\frac{5 \pi}{6}$$
In [34]:
im( soln[1] )
Out[34]:
$$0$$

ÇØ°¡ ½Ç¼öÀÓÀ» ¾Ë ¼ö ÀÖ´Ù.

º¹¼Ò¼ö¸¦ ½Ç¼ö¿Í Çã¼ö ºÎºÐÀ¸·Î ³ª´©¾î Ç¥ÇöÇÏ´Â expand_complex( ) ÇÔ¼ö¸¦ ÀÌ¿ëÇÑ´Ù. ¿¹¸¦ µé¾î¼­

$ e ^{\, i \frac \pi 4 } = \cos \frac \pi 4 + i \sin \frac \pi 4$

In [35]:
expand_complex( exp(I*pi/4) )
Out[35]:
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}$$

expand_complex( ) ¹æ¹ýÀ» µÎ ÇØ¿¡ Àû¿ëÇØº¸¸é

In [36]:
expand_complex( soln[1] )
Out[36]:
$$\frac{5 \pi}{6}$$
In [37]:
expand_complex( soln[2] )
Out[37]:
$$\frac{\pi}{6}$$

À§¿Í °°ÀÌ Çã¼öºÎ°¡ ¾ø´Â ½Ç¼öÇØ ÀÓÀ» È®ÀÎÇÒ ¼ö ÀÖ´Ù.

´ÙÀ½ »ï°¢ ¹æÁ¤½ÄÀ» Ǭ´Ù.

$\qquad \sqrt 3 \sin x - \cos x = 1\qquad \qquad$ ÇØ: $ \, x= \frac \pi 3 , \pi $

Áº¯ $= 0 \,\,$ ÀÇ ÇüÅ·Π¹Ù²Ù¾î¼­, ±×·¡ÇÁ¸¦ ±×¸®¸é

In [38]:
plot( sqrt(3)*sin(x) - cos(x) - 1, xlim=(-6.28,6.28), ylim=(-3,3) )
Out[38]:
<sympy.plotting.plot.Plot at 0x8fb4dd0>
In [39]:
soln = solve( sqrt(3)*sin(x) - cos(x) - 1, x )
soln
Out[39]:
$$\left [ \frac{\pi}{3}\right ]$$

ÇØ°¡ Çϳª¸¸ ¾ò¾îÁö°í, µÎ ¹øÂ° ÇØ $x = \pi$ ´Â ¾ò¾îÁöÁö ¾Ê¾Ò´Ù. À§ ¼ö½ÄÀ» ¸ÕÀú °£´ÜÈ÷ ÇÏ°í ³ª¼­

In [40]:
trigsimp( sqrt(3)*sin(x) - cos(x) - 1 )
Out[40]:
$$- 2 \cos{\left (x + \frac{\pi}{3} \right )} - 1$$
In [41]:
solve( _ , x )
Out[41]:
$$\left [ \frac{\pi}{3}, \quad \pi\right ]$$

´Ù½Ã Ç®¸é µÎ °³ÀÇ ÇØ°¡ ¾ò¾îÁø´Ù.

±×·¡ÇÁ¸¦ ¸ÕÀú ±×·Áº¸°í, ÇØ¸¦ ±¸ÇÏ´Â °ÍÀÌ È¿°úÀûÀÎ Ç®ÀÌ ¹æ¹ý ÀÓÀ» ¾Ë ¼ö ÀÖ´Ù.

´ÙÀ½ »ï°¢ ¹æÁ¤½ÄÀ» Ǭ´Ù.

$\qquad \cos 2x = 2 -3 \sin x \qquad$ ÇØ: $\, x= \frac \pi 6 , \frac \pi 2, \frac {5 \pi} 6 $

Áº¯ $= 0 \,\,$ ÀÇ ÇüÅ·Π¹Ù²Ù¾î¼­, ±×·¡ÇÁ¸¦ ±×¸®¸é

In [42]:
plot( cos(2*x) + 3*sin(x) - 2 , xlim=(-6.28,6.28), ylim=(-7,1) )
Out[42]:
<sympy.plotting.plot.Plot at 0x8e6ff70>
In [43]:
solve( cos(2*x) + 3*sin(x) - 2 , x  ) 
Out[43]:
$$\left [ \right ]$$

ÇØ°¡ ±¸ÇØÁöÁö ¾Ê´Â´Ù. ÁÖ¾îÁø ¼ö½ÄÀ» °£·«È­ÇØ º¸¸é

In [44]:
trigsimp( cos(2*x) - 2 + 3*sin(x)  ) 
Out[44]:
$$3 \sin{\left (x \right )} + \cos{\left (2 x \right )} - 2$$

´õ ÀÌ»ó °£·«È­°¡ µÇÁö ¾Ê¾Ò´Ù. ¼ö½ÄÀ» Àü°³ ÇÑ ´ÙÀ½¿¡ ÇØ¸¦ ±¸Çغ¸ÀÚ.

In [45]:
expand_trig( cos(2*x) - 2 + 3*sin(x) ) 
Out[45]:
$$3 \sin{\left (x \right )} + 2 \cos^{2}{\left (x \right )} - 3$$
In [46]:
soln = solve( _ , x )
soln
Out[46]:
$$\left [ \frac{\pi}{6}, \quad \frac{\pi}{2}, \quad 2 \operatorname{atan}{\left (\sqrt{3} + 2 \right )}\right ]$$
In [47]:
simplify( soln[2] )
Out[47]:
$$2 \operatorname{atan}{\left (\sqrt{3} + 2 \right )}$$

¸¶Áö¸· ÇØ´Â ¼öÄ¡ÀûÀ¸·Î $\frac {5 } 6 \pi$ ¿Í °°À½À» È®ÀÎÇØ º¼ ¼ö ÀÖ´Ù.

In [48]:
N( soln[2] - pi * 5 / 6 )
Out[48]:
$$5.0 \cdot 10^{-125}$$

ÇØ¼®ÀûÀ¸·Î $\frac {5 } 6 \pi$ ¿Í °°À½À» º¸À̱â À§Çؼ­, $\tan \frac {5 } {12} \pi $ ¸¦ ±¸Çغ¸¸é

In [49]:
tan(5*pi/12)
Out[49]:
$$\sqrt{3} + 2$$

$\tan ( \frac {5 } {12} \pi ) = \sqrt 3 + 2 $ À̹ǷΠ$\qquad \frac {5 } {12} \pi = \tan ^{-1} ( \sqrt 3 + 2 ) $ À̰í

$ \frac {5 } {6} \pi = 2 \tan ^{-1} ( \sqrt 3 + 2 ) $ ÀÌ´Ù.