sympy ¸ðµâÀ» ºÒ·¯¿À°í, »ç¿ëÇÒ ±âÈ£ º¯¼ö¸¦ ¼±¾ðÇÑ´Ù. ¸ËÇ÷Ը³ ¸ðµâÀ» ºÒ·¯¿Â´Ù.
from sympy import *
init_printing()
x, y, z = symbols('x y z')
%matplotlib inline
ÀÌÂ÷ÇÔ¼ö $y=x^2+2x-2$ ÀÇ ±×·¡ÇÁ¿Í Á÷¼± $y=x+1$ ¸¦ ±×¸°´Ù.
plot( x**2+2*x-2, x+1, xlim=(-6,6), ylim=(-4,4) )
$x$ Ãà°ú $y$ ÃàÀÇ ¹üÀ§¸¦ ¼³Á¤Çϱâ À§ÇÏ¿©, xlim °ú ylim ÀÎÀÚ¸¦ »ç¿ëÇÏ¿´´Ù.
ÀÌÂ÷¹æÁ¤½Ä $x^2+2x-2=x+1$ ÀÇ ±ÙÀ» ±¸ÇÏ¿©, µÎ ±×·¡ÇÁ°¡ ¸¸³ª´Â Á¡À» ã´Â´Ù.
solve( Eq( x**2 + 2*x - 2, x + 1 ), x )
À§ °á°úÀÇ ¼öÄ¡°ªÀ» ±¸ÇÑ´Ù.
[ N( _[0] ), N( _[1] ) ]
´ÙÀ½ ºÐ¼öÇÔ¼öÀÇ ±×·¡ÇÁ¸¦ ±×¸°´Ù.
$$y= \frac 1 {x-1} -2 $$plot( 1/(x-1) - 2, xlim=(-9,9), ylim=(-6,6) )
¹«¸®ÇÔ¼öÀÇ ±×·¡ÇÁ¸¦ ±×¸°´Ù.
$y= \sqrt {2x+4} + 1 $
plot( sqrt( 2*x + 4 ) + 1 )