코딩 수학

sympy ¸ðµâÀ» ºÒ·¯µéÀδÙ.

In [1]:
from sympy import *
init_printing()         # ¼ö½ÄÀ» º¸±âÁÁ°Ô Ãâ·ÂÇÏ´Â ÇÔ¼ö¸¦ È£ÃâÇÑ´Ù

º¯¼ö¸¦ ¼±¾ðÇÑ´Ù.

In [2]:
x, y, z = symbols('x y z')
In [3]:
a, b, c = symbols('a b c')

이차방정식

ÀÌÂ÷¹æÁ¤½ÄÀ» ¸¸µç´Ù.

In [4]:
eqn = Eq( a*x**2 + b*x + c, 0 )
eqn
Out[4]:
$$a x^{2} + b x + c = 0$$

¹æÁ¤½ÄÀ» Ç¥ÇöÇÒ ¶§´Â, Eq( ¿À¸¥ÂÊ ¼ö½Ä , ¿ÞÂÊ ¼ö½Ä ) À¸·Î ³ªÅ¸³½´Ù.

º¯¼ö eqn Àº ¹æÁ¤½Ä ±× ÀÚü¸¦ °¡¸®Å°±â À§Çؼ­ µµÀÔÇÏ¿´´Ù.

ÀÌÂ÷¹æÁ¤½ÄÀÇ ÀϹÝÇØ¸¦ ±¸ÇÑ´Ù. $\quad$ solve( ) ÇÔ¼ö

In [5]:
solve( eqn, x )
Out[5]:
$$\left [ \frac{1}{2 a} \left(- b + \sqrt{- 4 a c + b^{2}}\right), \quad - \frac{1}{2 a} \left(b + \sqrt{- 4 a c + b^{2}}\right)\right ]$$

´ÙÀ½ ÀÌÂ÷¹æÁ¤½ÄÀ» Ǭ´Ù.

$x^2+3x+1=0$

In [6]:
eqn = Eq( x**2 + 3*x + 1, 0 )
solve( eqn, x )
Out[6]:
$$\left [ - \frac{3}{2} - \frac{\sqrt{5}}{2}, \quad - \frac{3}{2} + \frac{\sqrt{5}}{2}\right ]$$

´ÙÀ½ ÀÌÂ÷¹æÁ¤½ÄÀ» Ǭ´Ù.

$2x^2-5x+4=0 \quad$ ( º¹¼Ò±Ù )

In [7]:
eqn = Eq( 2*x**2 - 5*x + 4, 0 )
solve( eqn, x )
Out[7]:
$$\left [ \frac{5}{4} - \frac{\sqrt{7} i}{4}, \quad \frac{5}{4} + \frac{\sqrt{7} i}{4}\right ]$$

고차방정식

´ÙÀ½ »ïÂ÷¹æÁ¤½ÄÀ» Ǭ´Ù.

$x^3+1=0$

In [8]:
eqn = Eq( x**3 + 1, 0 )
solve( eqn, x )
Out[8]:
$$\left [ -1, \quad \frac{1}{2} - \frac{\sqrt{3} i}{2}, \quad \frac{1}{2} + \frac{\sqrt{3} i}{2}\right ]$$

´ÙÀ½ »çÂ÷¹æÁ¤½ÄÀ» Ǭ´Ù.

$x^4-2x^3+x^2-4x+4=0$

In [9]:
eqn = Eq( x**4 - 2*x**3 + x**2 - 4*x + 4, 0 )
solve( eqn, x )
Out[9]:
$$\left [ 1, \quad 2, \quad - \frac{1}{2} - \frac{\sqrt{7} i}{2}, \quad - \frac{1}{2} + \frac{\sqrt{7} i}{2}\right ]$$

연립방정식

´ÙÀ½ ¿¬¸³¹æÁ¤½ÄÀ» Ǭ´Ù.

$$x+2y+3z=7$$$$3x-2y+ z=5$$$$2x-3y+z=2$$

¹æÁ¤½Ä°ú º¯¼ö°¡ ¿©·¯°³ÀÏ ¶§, [ ] ·Î °¨½Ñ´Ù.

In [10]:
solve( [ Eq(x+2*y+3*z,7), Eq(3*x-2*y+z,5), Eq(2*x-3*y+z,2) ], [x,y,z] )
Out[10]:
$$\left \{ x : 2, \quad y : 1, \quad z : 1\right \}$$

´ÙÀ½ ¿¬¸³¹æÁ¤½ÄÀ» Ǭ´Ù.

\begin{align} x+y &= 2 \\ 3x^2+xy-y^2 &= -9 \end{align}
In [11]:
solve( [ Eq(x+y,2), Eq(3*x**2+x*y-y**2,-9) ], [x,y] )
Out[11]:
$$\left [ \left ( -5, \quad 7\right ), \quad \left ( -1, \quad 3\right )\right ]$$

´ÙÀ½ ¿¬¸³¹æÁ¤½ÄÀ» Ǭ´Ù.

\begin{align} x^2-y^2 &= 0 \\ 2x^2-xy+y^2 &= 8 \end{align}
In [12]:
solve( [ Eq(x**2 - y**2, 0), Eq(2*x**2 - x*y + y**2, 8) ], [x,y] )
Out[12]:
$$\left [ \left ( -2, \quad -2\right ), \quad \left ( 2, \quad 2\right ), \quad \left ( - \sqrt{2}, \quad \sqrt{2}\right ), \quad \left ( \sqrt{2}, \quad - \sqrt{2}\right )\right ]$$

분수방정식

´ÙÀ½ ºÐ¼ö¹æÁ¤½ÄÀ» Ǭ´Ù.

$$\frac 1 {x-1} - \frac 2 {x^2 -1} = 3 $$
In [13]:
solve( Eq( 1/(x-1) - 2/(x**2 - 1), 3 ), x )
Out[13]:
$$\left [ - \frac{2}{3}\right ]$$

´ÙÀ½ ºÐ¼ö¹æÁ¤½ÄÀ» Ǭ´Ù.

$$\frac {x^2} {2x-1} + \frac {4x-2} {x^2} = 3 $$
In [14]:
solve( Eq( x**2/(2*x-1) + (4*x-2)/x**2 , 3 ), x )
Out[14]:
$$\left [ 1, \quad - \sqrt{2} + 2, \quad \sqrt{2} + 2\right ]$$

무리방정식

´ÙÀ½ ¹«¸®¹æÁ¤½ÄÀ» Ǭ´Ù.

$$\sqrt x + 2 = x $$
In [15]:
solve( Eq( sqrt(x) + 2, x ), x )
Out[15]:
$$\left [ 4\right ]$$

´ÙÀ½ ¹«¸®¹æÁ¤½ÄÀ» Ǭ´Ù.

$$x^2+x- \sqrt {x^2+x-3} = 9 $$
In [16]:
solve( Eq( x**2 + x - sqrt(x**2+x-3), 9 ), x )
Out[16]:
$$\left [ -4, \quad 3\right ]$$