sympy ¸ðµâÀ» ºÒ·¯µéÀδÙ.
from sympy import *
init_printing() # ¼ö½ÄÀ» º¸±âÁÁ°Ô Ãâ·ÂÇÏ´Â ÇÔ¼ö¸¦ È£ÃâÇÑ´Ù
º¯¼ö¸¦ ¼±¾ðÇÑ´Ù.
x, y, z = symbols('x y z')
a, b, c = symbols('a b c')
ÀÌÂ÷¹æÁ¤½ÄÀ» ¸¸µç´Ù.
eqn = Eq( a*x**2 + b*x + c, 0 )
eqn
¹æÁ¤½ÄÀ» Ç¥ÇöÇÒ ¶§´Â, Eq( ¿À¸¥ÂÊ ¼ö½Ä , ¿ÞÂÊ ¼ö½Ä ) À¸·Î ³ªÅ¸³½´Ù.
º¯¼ö eqn Àº ¹æÁ¤½Ä ±× ÀÚü¸¦ °¡¸®Å°±â À§Çؼ µµÀÔÇÏ¿´´Ù.
ÀÌÂ÷¹æÁ¤½ÄÀÇ ÀϹÝÇØ¸¦ ±¸ÇÑ´Ù. $\quad$ solve( ) ÇÔ¼ö
solve( eqn, x )
´ÙÀ½ ÀÌÂ÷¹æÁ¤½ÄÀ» Ǭ´Ù.
$x^2+3x+1=0$
eqn = Eq( x**2 + 3*x + 1, 0 )
solve( eqn, x )
´ÙÀ½ ÀÌÂ÷¹æÁ¤½ÄÀ» Ǭ´Ù.
$2x^2-5x+4=0 \quad$ ( º¹¼Ò±Ù )
eqn = Eq( 2*x**2 - 5*x + 4, 0 )
solve( eqn, x )
´ÙÀ½ »ïÂ÷¹æÁ¤½ÄÀ» Ǭ´Ù.
$x^3+1=0$
eqn = Eq( x**3 + 1, 0 )
solve( eqn, x )
´ÙÀ½ »çÂ÷¹æÁ¤½ÄÀ» Ǭ´Ù.
$x^4-2x^3+x^2-4x+4=0$
eqn = Eq( x**4 - 2*x**3 + x**2 - 4*x + 4, 0 )
solve( eqn, x )
´ÙÀ½ ¿¬¸³¹æÁ¤½ÄÀ» Ǭ´Ù.
$$x+2y+3z=7$$$$3x-2y+ z=5$$$$2x-3y+z=2$$¹æÁ¤½Ä°ú º¯¼ö°¡ ¿©·¯°³ÀÏ ¶§, [ ] ·Î °¨½Ñ´Ù.
solve( [ Eq(x+2*y+3*z,7), Eq(3*x-2*y+z,5), Eq(2*x-3*y+z,2) ], [x,y,z] )
´ÙÀ½ ¿¬¸³¹æÁ¤½ÄÀ» Ǭ´Ù.
\begin{align} x+y &= 2 \\ 3x^2+xy-y^2 &= -9 \end{align}solve( [ Eq(x+y,2), Eq(3*x**2+x*y-y**2,-9) ], [x,y] )
´ÙÀ½ ¿¬¸³¹æÁ¤½ÄÀ» Ǭ´Ù.
\begin{align} x^2-y^2 &= 0 \\ 2x^2-xy+y^2 &= 8 \end{align}solve( [ Eq(x**2 - y**2, 0), Eq(2*x**2 - x*y + y**2, 8) ], [x,y] )
´ÙÀ½ ºÐ¼ö¹æÁ¤½ÄÀ» Ǭ´Ù.
$$\frac 1 {x-1} - \frac 2 {x^2 -1} = 3 $$solve( Eq( 1/(x-1) - 2/(x**2 - 1), 3 ), x )
´ÙÀ½ ºÐ¼ö¹æÁ¤½ÄÀ» Ǭ´Ù.
$$\frac {x^2} {2x-1} + \frac {4x-2} {x^2} = 3 $$solve( Eq( x**2/(2*x-1) + (4*x-2)/x**2 , 3 ), x )
´ÙÀ½ ¹«¸®¹æÁ¤½ÄÀ» Ǭ´Ù.
$$\sqrt x + 2 = x $$solve( Eq( sqrt(x) + 2, x ), x )
´ÙÀ½ ¹«¸®¹æÁ¤½ÄÀ» Ǭ´Ù.
$$x^2+x- \sqrt {x^2+x-3} = 9 $$solve( Eq( x**2 + x - sqrt(x**2+x-3), 9 ), x )