sympy ¸ðµâÀ» ºÒ·¯¿À°í, »ç¿ëÇÒ ±âÈ£ º¯¼ö¸¦ ¼±¾ðÇÑ´Ù. ¸ËÇ÷Ը³ ¸ðµâÀ» ºÒ·¯¿Â´Ù.
from sympy import *
init_printing()
x, y, z, t = symbols('x y z t')
a, b, c, r = symbols('a b c r', constant=True)
f, g, h = symbols('f, g, h', cls=Function)
%matplotlib inline
¿¹¸¦ µé¾î ´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÏ·Á¸é $$\int 3x^2 dx = x^3 + C $$ integrate() ÇÔ¼ö¸¦ ÀÌ¿ëÇÏ¿© ÀûºÐÀ» ±¸ÇÑ´Ù.
integrate( 3 *x**2, x )
µÎ ¹øÂ° ÀÎÀÚ $x$ ´Â "$x$ ¿¡ ´ëÇÑ ÀûºÐ"À» ³ªÅ¸³»°í, ÀûºÐ »ó¼ö´Â µû·Î Ãâ·ÂµÇÁö ¾Ê´Â´Ù.
ÇÔ¼ö $\, x^r \,\,(r \,\text{Àº ½Ç¼ö})$ ÀÇ ºÎÁ¤ÀûºÐÀº
$r \neq -1$ ÀÇ °æ¿ì, $$\int x^r dx = \frac 1 {r+1} x^{r+1} + C $$ $r = -1$ ÀÇ °æ¿ì, $$\int x^{-1} dx = \ln \, \left| x \right| + C $$
integrate( x**r, x )
ÇÔ¼ö $\frac 1 x$ ÀÇ ÀûºÐÀ» ±¸Çغ¸¸é $\ln x$ ÀÌ´Ù.
integrate( 1/x, x )
°ø½Ä°ú ´Ù¸£°Ô ·Î±× ÇÔ¼öÀÇ ÀÎÀÚ¿¡ Àý´ë°ª Ç¥½Ã°¡ ¾ø´Âµ¥, ÀÌ °æ¿ìÀÇ $\ln x$ ´Â º¹¼Ò ÇÔ¼ö¸¦ ÀǹÌÇÑ´Ù.
º¹¼Ò ·Î±×ÇÔ¼ö $\ln x$ ¸¦ expand_complex( ) ¸¦ ÀÌ¿ëÇÏ¿© ½Ç¼öºÎ¿Í Çã¼öºÎ¸¦ ³ª´©¾î¼ ³ªÅ¸³» º»´Ù.
expand_complex( log(x) )
º¹¼Ò ·Î±×ÇÔ¼öÀÇ ½Ç¼öºÎ´Â º¹¼Ò¼ö $x $ ÀÇ Å©±â¿¡ ´ëÇÑ ½Ç¼ö ·Î±×ÇÔ¼öÀ̰í,
Çã¼öºÎ´Â $x$ ¸¦ º¹¼ÒÆò¸é À§¿¡¼ ±ØÁÂÇ¥ Çü½Ä ($x=r e^{i \theta}$)À¸·Î ³ªÅ¸³¾ ¶§ÀÇ À§»ó°¢ $\theta$ ÀÌ´Ù. ($-\pi<\theta<\pi$)
¿¹¸¦ µé¾î, $$\ln i = \ln 1 + i \frac {\pi} 2 $$
log( I )
À½ÀÇ ½Ç¼ö¿¡ ´ëÇÑ º¹¼Ò ·Î±×ÇÔ¼ö´Â ÁÖÀǸ¦ ¿äÇÑ´Ù.
À½ÀÇ ½Ç¼öÀÇ À§»ó°¢Àº $\pi$ ¶Ç´Â $-\pi$ ·Î¼ À½ÀÇ ½Ç¼öÃàÀ» °æ°è·Î ºÒ¿¬¼ÓÀÌ´Ù.
À̿Ͱ°ÀÌ º¹¼öÇÔ¼ö°¡ ºÒ¿¬¼Ó¼ºÀ» º¸ÀÌ´Â °æ°è¼±À» branch cut À̶ó ÇÑ´Ù.
º¹¼ÒÆò¸éÀÇ À§ÂÊ¿¡¼ À½ÀÇ ½Ç¼ö·Î Á¢±ÙÇÒ ¶§, À§»ó°¢Àº $\pi$ °¡ µÇ°í,
log( -1 + I*0.0000001 )
º¹¼ÒÆò¸éÀÇ ¾Æ·¡ÂÊ¿¡¼ À½ÀÇ ½Ç¼ö·Î Á¢±ÙÇÒ ¶§´Â, À§»ó°¢Àº $-\pi$ °¡ µÈ´Ù.
log( -1 - I*0.0000001 )
º¹¼Ò ·Î±×ÇÔ¼öÀÇ ÀÎÀÚ°¡ ¾çÀÇ ½Ç¼öÀÎ °æ¿ì¿Í À½ÀÇ ½Ç¼öÀÎ °æ¿ì¸¦ ±¸ºÐÇÏ¿© °íÂûÇØº¸ÀÚ.
¾çÀÇ ½Ç¼öÀÎ °æ¿ì:
±âÈ£ º¯¼ö $x$ ¸¦ ±¸Ã¼ÀûÀ¸·Î ¾çÀÇ ½Ç¼ö·Î ¼±¾ðÇÑ´Ù.
x = Symbol('x', real=True, positive=True)
$\ln x$ ¸¦ expand_complex() ·Î ½Ç¼öºÎ¿Í Çã¼öºÎ·Î ÆîÃļ ³ªÅ¸³»¸é
expand_complex( log(x) )
ÀÌ ·Î±×ÇÔ¼ö´Â ¾çÀÇ ½Ç¼ö $x$ ¸¦ ÀÎÀÚ·Î ÃëÇÏ´Â ½Ç¼ö ·Î±×ÇÔ¼öÀÌ´Ù.
½ÇÁ¦·Î, Çã¼öºÎ¸¦ Ç¥½ÃÇØ º¸¸é $0$ ÀÓÀ» ¾Ë ¼ö ÀÖ´Ù.
im( _ )
À½ÀÇ ½Ç¼öÀÎ °æ¿ì:
±âÈ£ º¯¼ö $x$ ¸¦ ±¸Ã¼ÀûÀ¸·Î À½ÀÇ ½Ç¼ö·Î ¼±¾ðÇÑ´Ù.
x = Symbol('x', real=True, positive=False)
$\ln x$ ¸¦ expand_complex() ·Î ½Ç¼öºÎ¿Í Çã¼öºÎ·Î Àü°³Çϸé
expand_complex( log(x) )
½Ç¼öºÎÀÇ ·Î±×ÇÔ¼ö´Â $-x$ ¸¦ ÀÎÀÚ·Î ÃëÇÑ ½Ç¼ö ·Î±×ÇÔ¼öÀÌ´Ù.
Çã¼öºÎ $\arg (x)$ ´Â À½ÀÇ ½Ç¼öÀÇ À§»ó°¢À̸ç, ±× °ªÀº $\pm \pi$ ÀÌ´Ù.
x = Symbol('x')
# [½ÉÈ °íÂû] --³¡--
µÎ ÇÔ¼öÀÇ ÇÕÀÇ ÀûºÐÀº ÀûºÐµéÀÇ ÇÕ°ú °°´Ù. $$ \int \{ f(x)+g(x) \} dx = \int f(x) dx + \int g(x) dx $$ ÇÔ¼öÀÇ »ó¼ö¹èÀÇ ÀûºÐÀº ÀûºÐÀÇ »ó¼ö¹è¿Í °°´Ù. $$ \int c f(x) dx = c \int f(x) dx \quad ( c \text{ ´Â »ó¼ö)}$$
¾î¶² µÎ ÇÔ¼ö $f(x)$¿Í $g(x)$ ¿¡ ´ëÇÏ¿©
f(x)
g(x)
integrate( c*f(x) + c*g(x), x )
´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÑ´Ù $$\int \frac {(x+1)^3} x dx = \frac 1 3 x^3 + \frac 3 2 x^2 +3x + \ln x + C $$
integrate( (x+1)**3 / x, x )
´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÑ´Ù $$\int x \sqrt {x^2+1} \,dx = \frac 1 3 (x^2+1) \sqrt{x^2+1} + C $$
integrate( x * sqrt(x**2+1), x )
´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÑ´Ù $$\int \frac x {x^2+1} dx = \frac 1 2 \ln (x^2+1) + C $$
integrate( x / (x**2+1), x )
´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÑ´Ù $$\int x \ln x \,dx = \frac 1 2 x^2 \ln x - \frac 1 4 x^2 + C $$
integrate( x * log(x), x )
´ÙÀ½ Á¤ÀûºÐÀ» ±¸ÇÑ´Ù $$\int _ 1 ^2 x^2 \,dx = \frac 7 3 $$
Á¤ÀûºÐÀ» integrate() ·Î ±¸ÇÒ ¶§´Â, $x$ ÀÇ µÎ ³¡À» °ýÈ£ ¾È¿¡ ³Ö¾îÁÖ¸é µÈ´Ù.
integrate( x**2, (x,1,2) )
´ÙÀ½ Á¤ÀûºÐÀ» ±¸ÇÑ´Ù $$\int _ 0 ^ 1 \frac t {1+t} \,dt = 1 - \ln 2 $$
integrate( t/(1+t), (t,0,1) )
´ÙÀ½ Á¤ÀûºÐÀ» ±¸ÇÑ´Ù $$\int _ 0 ^ 1 \sqrt {3x+2} \,dx = \frac {10 \sqrt 5} 9 - \frac {4 \sqrt 2} 9 $$
integrate( sqrt(3*x+2), (x,0,1) )
ÇÔ¼ö $f$ ¸¦ $t$ ÀÇ ÇÔ¼ö·Î ¼±¾ðÇÑ´Ù.
f(t)
Fx = integrate( f(t), (t,a,x) )
Fx
diff( Fx, x )
µÎ ¹øÂ° Ç×ÀÇ ÀûºÐ°ªÀº ½ÇÁ¦·Î $0$ ÀÌ´Ù. ÄÄÇ»ÅÍ¿¡°Ô ÀÌ ÀûºÐ°ªÀ» ±¸ÇÏ°Ô ÇÏ·Á¸é, doit() ¸Þ¼Òµå¸¦ ¾´´Ù.
_.doit()
°î¼± $y=x^2-4$ ¿Í Á÷¼± $y=x-2$ ·Î µÑ·¯½ÎÀÎ µµÇüÀÇ ³ÐÀ̸¦ ±¸ÇÑ´Ù.
fx = x**2 - 4
gx = x - 2
plot( fx, gx, xlim=(-6,6), ylim=(-4,4) )
µÎ °î¼±ÀÇ ±³Á¡À» ±¸ÇÑ´Ù.
soln = solve( Eq( fx, gx ), x )
soln
µÎ ±³Á¡ »çÀÌ¿¡¼ µÎ ÇÔ¼öÀÇ Â÷¸¦ ÀûºÐÇÏ¿©, µÑ·¯½ÎÀÎ ³ÐÀ̸¦ ±¸ÇÑ´Ù.
integrate( gx - fx, (x,soln[0],soln[1]) )
¹ÝÁö¸§ÀÇ ±æÀ̰¡ $r$ ÀÎ ±¸ÀÇ ºÎÇǸ¦ ±¸Çغ¸ÀÚ.
$x$ Ãà¿¡ ¼öÁ÷ÇÏ´Â Æò¸éÀ¸·Î ±¸¸¦ ÀÚ¸£¸é, ±× ´Ü¸éÀÎ ¿øÀÇ ³ÐÀÌ´Â $$ S(x) = \pi \left( \sqrt {r^2-x^2} \right) ^2 $$ ´Ü¸éÀÇ ³ÐÀÌ $S(x)$ ¸¦ ÀûºÐÇÏ¿©, ±¸ÀÇ ºÎÇǸ¦ ¾ò´Â´Ù. $$ \int _ {-r} ^ r S(x) \,dx = \frac 4 3 \pi r^3 $$
Sx = pi * ( r**2 - x**2 )
integrate( Sx, (x,-r,r) )
integrate( sin(x) )
integrate( cos(x) )
integrate( tan(x) )
$\tan x$ ÀÇ ÀûºÐ °á°ú°¡, °ø½Ä¿¡¼ÀÇ Ç¥Çö°ú ´Ù¼Ò ´Ù¸£´Ù. simplify( ) ¸¦ Àû¿ëÇØº¸¸é,
simplify( _ )
$\sin ^2 x + \cos ^2 x = 1 $ ÀÇ °ü°è¸¦ ÀÌ¿ëÇÏ¿©, ÀÎÀÚ¸¦ ÄÚ»çÀÎÇÔ¼ö·Î ¹Ù²Ù¾î ³ªÅ¸³½ °ÍÀÌ´Ù.
¶Ç, À§ÀÇ ·Î±×ÇÔ¼ö´Â ÀÎÀÚ°¡ À½ÀÇ ½Ç¼öÀ̹ǷÎ, º¹¼Ò ·Î±×ÇÔ¼ö·Î Ç¥ÇöÇÑ °ÍÀÌ´Ù.
±âÈ£ º¯¼ö $x$ ¸¦ ½Ç¼ö·Î Àç¼±¾ðÇϰí, ÀûºÐÀ» ´Ù½Ã ±¸Çغ¸ÀÚ.
x = Symbol('x', real=True)
intg = integrate( tan(x) ).simplify()
intg
¾Õ¿¡¼¿Í °°ÀÌ, ·Î±×ÇÔ¼öÀÇ ÀÎÀÚ $\, - \cos ^2 x $ ´Â À½ÀÇ ½Ç¼ö·Î¼, º¹¼Ò ·Î±×ÇÔ¼ö¸¦ ³ªÅ¸³½ °ÍÀÌ´Ù.
½Ç¼öºÎ¸¦ µû·Î ±¸Çغ¸¸é
_re = re( intg )
_re
logcombine() À» ÀÌ¿ëÇÏ¿©, °Á¦ÀûÀ¸·Î ´õ Á¤¸® ÇÒ ¼ö ÀÖ´Ù.
logcombine( _re, force=True )
ÀÌ¿Í °°ÀÌ, ½Ç¼öºÎÀÇ Ç¥ÇöÀÌ °ø½Ä°ú ÀÏÄ¡µÊÀ» ¾Ë ¼ö ÀÖ´Ù.
ÇÑÆí, ÀûºÐÀÇ Çã¼öºÎ´Â À½ÀÇ ½Ç¼öÀÇ À§»ó°¢À» ³ªÅ¸³½´Ù.
_im = im( intg )
_im
À§»ó°¢À» ±¸Ã¼ÀûÀ¸·Î ±¸ÇØÁÖÁö´Â ¾Ê¾ÒÁö¸¸, $\, \arg{\left (- \cos^{2} x \right )}$ ´Â À½ÀÇ ½Ç¼öÀÇ À§»ó°¢ÀÌ¸ç ±× °ªÀº $\pm \pi$ ÀÌ´Ù.
x = Symbol('x')
# [½ÉÈ °íÂû] --³¡--
´ÙÀ½ Á¤ÀûºÐÀÇ °ªÀ» ±¸ÇÑ´Ù. $$ \int _ 0 ^{\frac \pi 2} (1+\sin x)^2 \cos x \,dx = \frac 7 3 $$
integrate( (1+sin(x))**2 * cos(x), (x,0,pi/2) )
´ÙÀ½ Á¤ÀûºÐÀÇ °ªÀ» ±¸ÇÑ´Ù. $$ \int _ 0 ^{\frac \pi 2} x \sin x \,dx = 1 $$
integrate( x * sin(x), (x,0,pi/2) )
´ÙÀ½ ºÎÁ¤ÀûºÐÀÇ °ªÀ» ±¸ÇÑ´Ù. $$ \int \tan ^2 x \,\,dx = \tan x - x + C $$
integrate( tan(x)**2, x )
´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÑ´Ù. $$ \int 5 ^{\,-3x+2} \,dx $$
integrate( 5**(-3*x+2), x )
´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÑ´Ù. $$ \int x^2 e ^{\,x} \,dx = x^2 e^{\,x} -2xe^{\,x} +2e^{\,x} +C$$
integrate( x**2 * exp(x), x )
´ÙÀ½ Á¤ÀûºÐÀ» ±¸ÇÑ´Ù. $$ \int _ 1 ^ e ( \ln x )^2 \,dx = e - 2 $$
integrate( log(x)**2, (x,1,exp(1)) )
´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÑ´Ù. $$ \int \frac 1 {x(x-1)} \,dx = \ln \left| \frac {x-1} x \right| +C$$
integrate( 1/x/(x-1), x )
·Î±×ÇÔ¼öÀÇ ÀÎÀÚµéÀÌ ¸ðµÎ ¾ç¼öÀ̸é, ·Î±×¸¦ ÇÕÄ¥ ¼ö ÀÖ´Ù.
logcombine() ¿¡¼ force Ű¿öµå¸¦ ÂüÀ¸·Î ¼³Á¤ÇÑ´Ù.
logcombine( _ , force=True )
´ÙÀ½ Á¤ÀûºÐÀ» ±¸ÇÑ´Ù. $$ \int _ 1 ^ 2 \frac {2x-1} {(x+1)^2} \,dx = 2 \ln 3 - 2 \ln 2 - \frac 1 2 $$
integrate( (2*x-1)/(x+1)**2, (x,1,2) )
´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÑ´Ù. $$ \int \frac 1 {1+x^2} \,dx = \tan ^{-1} x + C $$
integrate( 1/(1+x**2), x )
´ÙÀ½ Á¤ÀûºÐÀ» ±¸ÇÑ´Ù. $$ \int _ 0 ^ 1 \frac 1 {1+x^2} \,dx = \frac {\pi} 4 $$
integrate( 1/(1+x**2), (x,0,1) )
´ÙÀ½ Á¤ÀûºÐÀ» ±¸ÇÑ´Ù. $$ \int _ 0 ^ {\frac 1 2} \sqrt {1-x^2} \,dx = \frac {\pi} {12}+ \frac {\sqrt 3} 8 $$
integrate( sqrt(1-x**2), (x,0,Rational(1,2)) )
´ÙÀ½ ºÎÁ¤ÀûºÐÀ» ±¸ÇÑ´Ù. $$ \int \frac 1 {\sqrt {1-x^2}} \,dx = \sin ^{-1}x + C $$
integrate( 1/sqrt(1-x**2), x )
±¸°£ $[a,b]$ ¿¡¼ °î¼± $\, y=f(x)$ ÀÇ ±æÀÌ´Â
$$ \int _ a ^b \sqrt{ 1+ \{ f'(x) \}^2 } \,dx $$±¸°£ $[-\frac 1 2, \frac 1 2]$ ¿¡¼ °î¼± $\, y=\sqrt{1-x^2}$ ÀÇ ±æÀ̸¦ ±¸ÇÑ´Ù. $\qquad \text{Á¤´ä:} \, \frac {\pi} 3$
fx = sqrt(1-x**2)
fp = diff( fx, x )
integrate( sqrt( 1 + fp**2 ), (x,-Rational(1,2),Rational(1,2)) )
±¸°£ $[-1, 1]$ ¿¡¼ °î¼± $\, y=\sqrt{1-x^2}$ ÀÇ ±æÀ̸¦ ±¸ÇÑ´Ù. $\qquad \text{Á¤´ä:} \, \pi $
integrate( sqrt( 1 + fp**2 ), (x,-1,1) )